Fraunhofer ILT

Fraunhofer Institute for Laser Technology ILT

© Fraunhofer ILT

With about 370 employees and more than 11,000 m² of usable floorspace the Fraunhofer Institute for Laser Technology ILT is worldwide one of the most important development and contract research institutes of its specific field. Our technology areas cover the following topics: laser and optics, medical technology and biophotonics, laser measurement  technology  and laser materials processing. This includes laser cutting, caving, drilling, welding and soldering as well as surface treatment, micro processing and rapid manufacturing. Furthermore, the Fraunhofer ILT is engaged in laser plant technology, process control, modeling as well as in the entire system technology. We offer feasibility studies, process qualification and laser integration in customer specific manufacturing lines.

Transparent 3D microcomponents assembled

© Fraunhofer ILT, Aachen

Gear wheel measuring three millimeters in diameter mounted on a shaft, made from a single block of fused silica using the ISLE technique

© Fraunhofer ILT, Aachen/Volker Lannert

Illustration of the size of an ISLE-manufactured micro gear wheel

In cooperation with the Chair for Laser Technology LLT at RWTH Aachen University, a new laser manufacturing technique was developed at Fraunhofer ILT. The technique shortens the manufacturing process for micro components made from transparent materials and reduces the amount of material and energy used. Now the experts have applied in-volume selective laser etching (ISLE) to the manufacture of composite and assembled parts. This means there is no longer any need to adjust and assemble the individual components in micromechanical systems. The exposure time for a gear wheel already mounted on a shaft and fitted inside a housing is only around 15 minutes using the ISLE technique.

The ISLE-Process:

The process works as follows: using ultrashort pulsed laser radiation, a transparent work piece is exposed in the volume with 3D resolution at precisely the areas where material is to be removed. The material is chemically and physically changed and therefore gets selectively etchable. In the subsequent wet-chemical etching process, the exposed material is removed, while the unexposed material is scarcely affected by the etching process. This process makes it possible to manufacture micro channels, shaped holes, structured parts, and complex, composite mechanical components and systems. The ISLE technique can also be used for sapphire and glass as well as ruby. It is reproducible and ensures that components are geometrically identical in series production, while also offering a high degree of geometric and design freedom. Particularly impressive are its ability to produce shapes with micrometer accuracy, as well as kerfs and bores with extremely large aspect ratios, thanks to the small focus volume. The ISLE technique enables a level of material and energy efficiency that is simply not possible to obtain mechanically using even the most advanced ablative processes.

Scaling the laser manufacturing technique for industrial application :

The main challenge facing the researchers in Aachen now consists in developing the ISLE technique so that it can be used by the manufacturers of micro components. “We are constantly working on improving the scalability of our technique so that a transfer from the lab to industrial-scale production can take place sometime in the future,” explains Dr. Dagmar Schaefer, group manager at Fraunhofer ILT. “The ISLE technique is individually adapted to the customer’s requirements according to the specific application. The biggest challenge for us is to achieve both the required component specifications and a sufficiently rapid structuring process at the same time.”

The exposure speed is currently several hundred millimeters a second. The goal is to increase this to several meters a second. At present, exposing a mounted gear wheel with a diameter of three millimeters would take 15 minutes; the higher exposure speed would reduce this time by a factor of 10.

Fraunhofer Institute for Laser Technology ILT

Steinbachstr. 15

52074 Aachen

Germany

Phone +49 241 8906-0

Fax +49 241 8906-121

Latest News

15.10.2019

Putting quantum bits into the fiber optic network

Transporting quantum information over long distances with glass fibers and paving the way for the quantum Internet: With this goal in mind, the Dutch research center QuTech and the Fraunhofer Institute for Laser Technology ILT launched the ICON project QFC-4-1QID on September 1, 2019. In this long-term strategic partnership between the research institutions, the scientists will be developing quantum frequency converters that will connect quantum processors to fiber optic networks. The new technology will be used in the world's first quantum Internet demonstrator in 2022.
Read more

8.10.2019

Fraunhofer lighthouse project futureAM at formnext

In the Fraunhofer lighthouse project “futureAM – Next Generation Additive Manufacturing,” an alliance of six Fraunhofer institutes shall accelerate 3D printing with metal powder by at least a factor of ten. The first tangible results prove that this is not a dream of the future. The futureAM team will be presenting these results at the joint Fraunhofer booth D51 in Hall 11 during formnext from November 19 to 22, 2019 in Frankfurt am Main.
Read more

1.10.2019

More productivity thanks to optimized AM processes

The market for additive processes continues to grow by around 20 percent annually and has reached a volume of 10 billion euros. This was reported by the organizer of formnext, the world's leading trade fair for additive manufacturing (AM) in Frankfurt. In AM, the trend is clearly moving towards greater productivity. Thanks to its new materials, lasers for eMobility and highly efficient 3D coating processes, the Fraunhofer Institute for Laser Technology ILT is providing the right ideas at the right time.
Read more

24.9.2019

Wire laser material deposition – a smart way to save costs

Within a BMBF-funded project, the Fraunhofer Institute for Laser Technology ILT is tackling the issue of 3D printing large components economically by using a new process called Hybrid AM that combines conventional manufacturing with additive processes. An important step forward in this process development is a new wire LMD head and its modular components which the Aachen-based experts will be presenting for the first time at formnext from November 19 to 22, 2019 in Frankfurt am Main.
Read more